

STEM in practice!

Mary Southall and Kevin Jones Attainment Partnership Ltd

Attainment Partnership Ltd

Kevin Jones

•deputy head of a Technology College

•AST

- •cohort of 98 taking A. level design and technology
- •SSAT National Subject Leader: Technology Colleges

Mary Southall

- •HoD / senior teacher
- •AST
- •100% grade A's at A. level (23 in the group!)

what do we do?

- Working in a variety of schools every week
- The **Design Museum** (write and deliver secondary CPD)
- The Victoria and Albert Museum (write and deliver secondary teaching and learning materials for design and technology)
- The Design Council (member of the national 'Design Skills' advisory panel and chair of schools steering group) including chief moderator Design Mark
- Specialist Schools and Academies Trust SSAT
- Qualifications and Curriculum Development Authority QCDA
- IET Faraday STEM materials (write and deliver)
- STEM materials for L&T Scotland
- Buffalo State University, New York USA (write and deliver CPD)
- South East Asia international conference (present keynotes)
- HoK architects (advice on BSF)
- D&T Association (write publications, deliver CPD)

why STEM?

- UK plc!
- issues in schools
- practice that works!

• UK plc need STEM skills

the need for more UK STEM graduates

- 550,000 engineering companies in UK
- face a shortfall of 600,000 employees over the next ten years

IET Faraday

the need for more UK STEM graduates

Report by the High Level Group on Increasing Human Resources for Science and Technology in Europe 2004

More than **half of students** across all taught postgraduate engineering courses at UK universities are **domiciled outside the EU**. In some engineering courses non-EU domiciled students account for as many as two-thirds of places.

The findings of *Engineering UK 2007* clearly show the **need to improve the supply of suitably qualified engineers** and technicians in order to match the ongoing and future anticipated demand for skills. **Engineering UK 2007 ETB**

All bright children should be entered automatically for triple science at GCSE, covering physics, chemistry and biology. He also called on the Government to offer £1,000 a year to science, technology, engineering and maths under-graduates.

Richard Lambert, the Director-General of the CBI

Real engineering transforming your lessons

www.lettaraday.org

Queen Elizabeth prize for Engineering

£1m engineering prize launched

A £1m prize - named after the Queen - is to be awarded for exceptional advances in engineering.

The Queen Elizabeth Prize for Engineering: New £1 Million Global Award for Engineering That Benefits Humanity

• issues in schools

the secondary curriculum...

- greater coherence
- greater flexibility
- greater creativity

Qualifications and Curriculum Authority

STEM is the new Literacy!

 Science, Technology, Engineering and Maths Colleges have undoubtedly made strides to improve young peoples perceptions of STEM subjects

Real engineering transforming your lessons

altering perceptions of engineering

issues in schools

- Assessment finding a strand from each subject
- Planning -team planning
- Evidence of learning give responsibility to the learner
- Timetabling/curriculum delivery models

assessing STEM activities

DANCE POWER: SUSTAINABLE DANCECLUB

These classroom activities look further into the scientific concepts and technologies behind the sustainable dance floor and relate directly to the 'Dance Power' Film. They have been designed for mathematics, science and design and technology and all activities are mapped to the new Secondary Curriculum and PLTS framework. The activities clearly relate to one another and would best be used as part of a programme of study.

Subject	Activity	Description	Content Focus
Maths	Dancing is Electric	A short but challenging activity in which students interpret and produce graphs modelling the energy produced on a sustainable dance floor.	Number and algebra
Design & Technology	The Shocking Truth	A research and development project focusing on the piezoelectric effect. A D&T activity with cross-curricular links with Science.	Systems and control
Science	The Psychology of Colour	Challenge your students to build on what they learned in the 'Shocking Truth' activity by understanding how engineers and scientists collaborate to develop ideas for practical applications.	Energy, electricity and forces; Organisms, behaviour and health
Design & Technology	The Power of Colour	Using the sustainable dance floor as a stimulus, investigate the psychological effects that colour has on humans.	The study of designing

Personal Learning and Thinking Skills (PLTS)

Several of the PLTS are emphasised throughout these activities. However, reflective learning was the key focus in the design of these activities.

Reflective learners: Young people evaluate their strengths and limitations, setting themselves attainable goals with realistic criteria for success. They monitor their own performance and progress, inviting feedback from others and making changes to further their learning.

assessing STEM activities

A still das blanns	England & Wales			Martham Indanal	I Scotland	
Activity Name	Science Design & Technology Maths		Northern Ireland			
Energy Efficiency	Critical understanding of evidence 2.2.a, Communication 2.3.a, Energy, electricity and forces 3.1.a			Forces and energy transfer, The environment and human influences	Planet Earth, SCN 3-04a, 3-04b	
Let there Be Light		Designing and making 1.1b, 1.1c, Apply knowledge and understanding of materials 2.c, Knowledge of others' designing 2.d, Practical application of systems and control 3.n		Design – identifying problems; investigating, generating, developing, modeling and evaluating design proposals. Control – incorporate control systems, such as mechanical, electronic or computer-based, in products and understand how these can be employed to achieve desired effects.	Computing science contexts for developing technological skills and knowledge, TCH 3-09a, Craft, design, engineering and graphics contexts for developing technological skills and knowledge, TCH 3-12a	
Underground Pipes and Recycling			Representing 2.1.a, 2.1.d, Analysing 2.2.a, Communicating and reflecting 2.4.b, Number and algebra 3.1e, Geometry and measures 3.2h,	knowledge and understanding of; • number • algebra	Number, Money and Measure, MNU 3-03a, 3- 05a	

planning STEM activities

- plan new activities as a team
- hand over existing activity and ask science or maths teacher to bring their 'bits' to life

a maths activity?

Session One Activities		
Activities	Diagnostic/High level questions	Questions for the team/comments
Introduction Using ppt slide 1 show the slide full of original sketches - Key learning = inventions start with simple ideas/sketches.	Extension activity – research Sir George Cayley (a fascinating figure with a very interesting life). Could provide some information in terms of social context to help make the link between technological development and society 2	
1. Telephone – Graham Alexandra Bell 2. Telescope – Issacc Newton 3. Parachute - Leonardo 4. Machine gun - Leondardo 5. Helicopter – Sir George Cayley		
Using ppt slide 2 ask 'How could it work' Using the images shown Jp pairs, try and work out what produces the rotary motion. Ask the students to 'disassemble the model (in their minds eye) and write down all the different components	A nice introduction could include making a paper helicopter - <u>http://www.exploratorium.</u> <u>edu/science_explorer/rot</u> <u>o-copter.html</u>	A useful website – http://www.geocities.com/ae rohydro/mfm/model.htm
 two corks - to attaché the feathers 8 feathers - to provide the lift Piece of dowell - to separate the rotary movement and provide more lift String - to twist around the dowell and act as the potential <u>energy 2</u> Bow - to help store the energy before it is released 	Need to make one and describe the components in more detail	

evidence of learning

 how do we capture evidence of learning across STEM subjects?

evidence of learning

IET Faraday

flexible and creative delivery models

- A whole year group in the hall to kick start the activity
- A whole day event involving teams of students working on the various subject specific learning activities
- A sequence of learning activities e.g. maths, followed by design and technology and then science for the required period of time
- Lessons taught through the different subject areas, but constantly referring and reinforcing the learning in the other two.
- Work with your Primary schools, perfect for STEM activities

whole day activities

IET Faraday

The Institution of Engineering and Technology Th

The Knowledge Network

Search IET Faraday

IET FARADAY

WELCOME TO IET FARADAY

An exciting year-long programme of resources, activities, competitions and events designed to inspire young people about science, technology, engineering and maths (STEM).

With a new theme every year, the website contains a wealth of resources, including teaching materials for KS3, KS4 and Engineering Diploma, specially made films and gamea, which bring the real world of engineering to life.

More about us

ENGINEERING THEMES | NEWS | TEACHERS RESOURCES | CAREERS | ABOUT US

This year's theme looks at some of the most innovative structures we live amongst today, as well as what we might have in the future.

URBAN EVOLUTION

Thank you to all schools that submitted a Challenge Day host school application. We received more than expected! Have a look at

All the support material you need to use the IET Faraday themes in your own teaching environment.

Get the meterials

minds into .org/faraday

aims of the materials

- To support the teaching of the secondary curriculum and to be closely aligned to the STEM agenda
- To allow the teacher to engage and 'own' the resources and consequently adapt them to their specific context and needs
- To allow a high level of flexibility and creativity when using the activities

how were they designed?

- use 'youth technologies'
- to be current and relevant
- use to real 'engineers'
- bring new curriculum to life

 The current revision of the Key Stage 3 curriculum initiated by the Qualifications and Curriculum Authority holds the promise that the cross-curricular activity required by STEM will become the norm rather the exception.

youth technologies - youtube

how were they designed?

- use 'youth technologies'
- to be current and relevant
- use to real 'engineers'
- bring new curriculum to life

 The current revision of the Key Stage 3 curriculum initiated by the Qualifications and Curriculum Authority holds the promise that the cross-curricular activity required by STEM will become the norm rather the exception.

current and relevant

how were they designed?

- use 'youth technologies'
- to be current and relevant
- use to real 'engineers'
- bring new curriculum to life
- The current revision of the Key Stage 3 curriculum initiated by the Qualifications and Curriculum Authority holds the promise that the cross-curricular activity required by STEM will become the norm rather the exception.

real engineers

how were they designed?

- use 'youth technologies'
- to be current and relevant
- use to real 'engineers'
- bring new curriculum to life

 The current revision of the Key Stage 3 curriculum initiated by the Qualifications and Curriculum Authority holds the promise that the cross-curricular activity required by STEM will become the norm rather the exception.

Þ

IET FARADAY

ENGINEERING THEMES | NEWS | TEACHERS RESOURCES | CAREERS | ABOUT US

WELCOME TO IET FARADAY

An exciting year-long programme of resources, activities, competitions and events designed to inspire young people about science, technology, engineering and maths (STEM).

With a new theme every year, the website contains a wealth of resources, including teaching materials for KS3, KS4 and Engineering Diploma, specially made films and games, which bring the real world of engineering to life.

More about us

This year's theme looks at some of the most innovative structures we live amongst today, as well as what we might have in the future.

URBAN EVOLUTION

CHALLENGE DAYS

Thank you to all schools that submitted a Challenge Day host school application. We received more than expected! Have a look at

All the support material you need to use the IET Faraday themes in your own teaching environment. MORE THEMES

tomotrow's scientists, technologists, engineers and mathematicians www.thelet.org/raraday

IET Faraday Transforming your lessons

RESOURCES BY THEME

Materials (Urban Evolution) Urban Evolution

Materials (Sport) Real Stars of Sport

Materials (Health) Technology for Life

Teacher Resources

Your role is to inspire your students about science, design and technology, engineering and maths (STEM). Ours is to make that task easier and more rewarding.

The award-winning IET Faraday is a free resource for teachers from The Institution of Engineering and Technology (IET). The programme provides an adaptable set of practical activities, based on designing, testing and developing to allow your students to apply knowledge and understanding in a meaningful way.

We know that science, engineering and technology are amazing, but encouraging students to realise this too can be challenging. Mapped to the curriculum and developed to complement your teaching, our materials will inspire your students with the real world application of these subjects.

Linking to the curriculum

Our free programme includes

- Stimulating online materials, closely aligned to the STEM curricula, providing a structure for teachers in different departments to work collaboratively;
- High quality support for KS3, GCSE and the Engineering Diploma (and equivalents);
- 3. Opportunities to link to ICT, Enterprise and Citizenship;
- A wide range of worksheets for practical activities which can be creatively adapted to meet the needs of your classes.

Aerodynamics in action

139 k updated October 2008

ENGINEERING THEMES | NEWS | TEACHERS RESOURCES | CAREERS | ABOUT US

URBAN EVOLUTION

TEACHING MATERIALS: DANCE POWER

These classroom activities look further into the scientific concepts and technologies behind the sustainable dance floor and relate directly to the <u>Dance Power film</u>.

They have been designed for mathematics, science and design and technology (D&T) lessons and are mapped to the new Secondary Curriculum and Personal Learning and Thinking Skills (PLTS) framework.

The activities clearly relate to one another and would best be used as part of a programme of study:

 Dancing is Electric' (Maths Activity): A short but challenging activity in which students interpret and produce graphs modelling the energy produced on a sustainable dance floor.

HOME I CHALLENGE I COMPETITION I THEME MATERIALS

MATERIALS:

Dance Power Green School Power House Pure Water Shifting Sewage Sound Design

-	-		1000
	Far	aus	av 🛛
	I UI	auc	4 9
ransform	ning you	r lessons	

Dancepower(all-files)		C	
	Q		
Name	Date Modified	Size	
Curriculum-Mapping(UrbanEvolution).doc	17 December 2009 15:22	213 KB	
Dance-is-Electric(Maths).doc	17 September 2009 17:25	1.4 MB	
Dance-is-Electric(Maths).ppt	15 September 2009 14:38	1.3 MB	
Overview-UrbanEvolution-Materials.doc	17 December 2009 15:28	352 KB	
Power-of-Colour-1(D&T).ppt	15 September 2009 14:38	160 KB	
Power-of-Colour-2(D&T).ppt	15 September 2009 14:38	193 KB	
Power-of-Colour(D&T).doc	18 September 2009 11:28	188 KB	
Psychology-of-Colour(Science).doc	15 September 2009 14:38	188 KB	
Shocking-Truth(D&T).doc	15 September 2009 14:38	3.4 MB	

1414

9 items, 234.97 GB available

HOME | CHALLENGE | COMPETITION | THEME MATERIAL

URBAN EVOLUTION

THE STORY: DANCE POWER

PLAY:

THE ENGINEERING

Tile Prototypes

There is lot of energy coming from a crowd of clubbers when the music and environment are right. Why not harness that energy and use it to help power the lights?

THE TEAM

<u>Dr Helm Jansen</u> <u>Dr Johan Paulides</u>

IET FARADAY

National Engineering Challenge day 2010

Urban dwellers adapt to global warming

National Challenge Days

- 57 events across England, N Ireland, Scotland and Wales
- each have six teams (from six different local schools) of six Y8 students (3 girls, 3 boys where possible)
- 342 schools, 2,052 students per year

context film

IFFFARADAY

Real engineering transforming your lessons

www.lettaraday.org

Context and engineering brief

- Over the past few years the UK has seen unprecedented flood levels across a range of urban areas
- Your team has been commissioned to design and make a prototype of a simple device, that will allow homeowners to remove water from their homes, during periods of flooding.

Real engineering transforming your lessons

www.ielfaraday.org

Real engineering transforming your lessons

assessment

- Initial ideas
- Development of ideas
- Team accounting sheet
- STEM questions
- Team 'learning' video
- Teamwork
- The Challenge

10 marks 20 marks 10 marks 30 marks 30 marks 10 marks 90 marks

teacher feedback

The Content of the Challenge Day	Strongly disagree	Disagree	Agree	Strongly agree
The level of complexity of content was suitable for aged 12-13 students	0	0	43	111
The Challenge Days were relevant to and supportive of, the national curriculum	0	0	67	97
The Challenge Days will encourage students to continue studying science, technology, engineering and maths related	0	1	39	113
The choice of presenters was suitable for the audience	0	0	25	141
The Challenge Day made careers in engineering, science and technology attractive to students	0	0	75	88
The Challenge Days are run for a full school day. This is the right length of time for the Challenge Day.	0	0	35	108

The Content of the Day - a selection of comments

Very good range of resources - excellent way of putting engineering into context. Task is definitely a challenge! Good to have girls and boys involved and allow them a 'free' run to be creative.

Could do with 'handout' support materials (STEM careers) for the students.

A very enjoyable day. All students left enthused about science and engineering.

Excellent, really engaging for the level of pupils age and ability.

It would be nice if the Challenge Day could be run to come to all schools, or so we could bring more students, as I'd like this opportunity to be available to many more.

This run out of our school environment, by outside presenters was a perfect way to get over to students. The way this subject, career etc was better received and its far better that others got this accros to them.

An excellent day for all involved, really well organised and structured.

Excellent that an external agency comes in and takes the event. Far more successful with this being the case.

An absolutely brilliant day, I thouroughly enjoyed it - pupils had a great time. Highly recommended.

Gets students to work tegether as a team - develops PLTS skills

Look forward to examining the website and resources for teachers

student feedback

Interest and Enjoyment

My thoughts on science, technology, engineering and maths subjects	Strongly disagree	Disagree	Agree	Strongly agree
The Challenge Days showed science, technology, engineering and maths as interesting subjects	2	45	550	373
I was inspired by the Challenge Day to take science, technology or engineering at GCSE	11	197	533	223
I would consider a career in engineering as a result of the Challenge Days	65	365	410	130
Before attending the Challenge Day I had considered pursuing a career in engineering	275	436	175	84

Challenge Day Final 2009

Challenge Day Final 2010 Scientific fun at the Big Bang

Do YOU know what the Big Bang is? You might have heard it was an almighty explosion of dense matter that marked the beginning of our universe but it's even more fun than that – it's also a science fair that celebrates great British design, engineering and technology.

This year's Big Bang took place in March and marked the end of a nationwide competition for schools, the <u>IET</u> Faraday Challenge. It is named after Michael Faraday, one of Britain's greatest scientists.

Finalists were asked to design and make a device that could be used by the earthquake-hit people of Haiti. The device was meant to enable Haitians to filter river water and make it safe to drink.

The teams were set the tough challenge with just six hours to complete it. They were given recyclable materials such as MDF, rubber and tubing, and a laptop with internet access. After some hard work, head-scratching and heartache, time was up and the winners were

DESIGN INSPIRATION: The winning team from Victoria College, Belfast

announced. An all-girl team from Victoria College in Belfast were clear champions and went home with a cheque for £1,000 and a bust of Michael Faraday. The girls loved the experience and a number of them were so inspired they are looking into careers in the field of design and technology.

If you're keen to find out more about working in innovation, go to www.theiet.org.

MICHAEL FARADAY: Need 2 Know

- He was born to a poor family in London in 1791
- He educated himself by reading books on science
- He discovered electromagnetic induction, the stuff that makes electric motors work
- His discoveries about electricity changed our world
- He was a great teacher and gave amazing lectures about science

- Mary Southall and Kevin Jones
- Thank you

